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Abstract

The main objective of this article is to study the exponential sums associated to Fourier
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1 Introduction
Let f be a modular form of weight k ∈ 2Z and levelN such that it has a Fourier expansion

f (z) =
∞∑

n=1
a(n)e2π inz, �(z) ≥ 0,

with a(n) be the nth Fourier coefficient. In this article, we shall restrict to the family of
modular forms with rational coefficients, that is, f (z) with a(n) ∈ Q for every n. We first
consider Hecke eigenforms or simply eigenforms in the space of cusp forms of weight k
for the congruence subgroup �1(N ) with trivial nebentypus.When f is an eigenform with
integer Fourier coefficients, it follows fromDeligne-Serre that for any prime �, there exists
a corresponding Galois representation

ρ
(�)
f : Gal

(
Q/Q

)
−→ GL2 (Z�)

such that tr(ρ(�)
f (Frobp)) = a(p), for any prime p � N�. For a quick reference about this

correspondence, we refer the interested reader to [8, Chapter 3].
In particular,a(p) (mod �) is determinedby the trace of the corresponding Frobenius ele-

ment in GL2(Z�/�Z�) = GL2(F�). In certain cases, Chebotarev’s density theorem implies
that given any λ ∈ F�, there exists a prime p such that a(p) ≡ λ (mod �).However, the set
of such primes p come with density strictly less than 1. So what about the other primes p?
In this context, we address the following Waring-type question.

Question Does there exist an absolute constant s such that for any given primes p and �,
any element of F� can be written as a sum of at most s elements of the set {a(pn)}n≥1?

A related question was studied by Shparlinski in [24] for the Ramanujan’s τ function,
where τ (n) is defined by the identity

�(z) = q
∏

n≥1
(1 − qn)24 =

∑

n≥1
τ (n)qn, with q = exp(2π iz).

In [24], it is proved that the set {τ (n)}n≥1 is an additive basis modulo any prime �, that is,
there exists an absolute constant s such that the Waring-type congruence

τ (n1) + · · · + τ (ns) ≡ λ (mod �)

is solvable for any residue class λ (mod �).
Shparlinski’s work was later generalized by Garaev, García and Konyagin over the global

field Q.More precisely, in [10], the authors proved that for any λ ∈ Z, the equation
s∑

i=1
τ (ni) = λ

always has a solution for s =74,000.
Later García and Nicolae [12] extended this result for coefficients a(n) of normalized

Hecke eigenforms of weight k in Snewk (�0(N )). More precisely, they proved that for any
λ ∈ Z, the equation

s∑

i=1
a(ni) = λ

always has a solution for some s ≤ c(f ) with c(f ) satisfying

c(f ) 	 (2N 3/8)
k−1
2 +εk

3
16 k+O(1)+ε log(k + 1).
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The proof of the above two results are connected to the identity a(p2) = a2(p)−pk−1 and
the solubility of the equation

pk−1
1 + · · · + pk−1

s = N, for primes p1, . . . , ps.

We are studying the finite field version of this additivity problem by obtaining nontrivial
exponential sums associated with coefficients of modular forms, in the sense of [24].
We are working with the class of forms that García and Nicolae [12] considered, but
with Fourier coefficients evaluated only at prime powers. Our results are recorded in
Corollaries 15 and 16. Our main tool is Theorem 1 which provides a nontrivial bound
for exponential sums with coefficients of modular forms. To study this problem, we shall
primarily focus on the exponential sums of type

max
ξ∈F

∗
�

∣∣∣∣∣
∑

n≤τ

e� (ξa(pn))

∣∣∣∣∣

where p, � are primes, and τ is a suitable parameter which we shall specify later. This is
done in Theorems 2 and 3.
When f is a normalized eigenform, it is well known that a(n) is a multiplicative function

and for any prime p � N satisfies the relation

a(pn+2) = a(p)a(pn+1) − pk−1a(pn), n ≥ 0. (1)

Moreover, we have a(pn) = a(p)n for any prime p | N . These facts come from the
properties of Hecke operators, see [5, Proposition 5.8.5]. If a(p) ∈ Q, then one can
consider a(p) (mod �) ∈ F� naturally for any large enough prime �. For instance, � can be
taken to be any prime not dividing the denominators of the Fourier coefficients. On the
other hand, any cuspform can be uniquely written as a C-linear combination of pairwise
orthogonal eigenforms with Fourier coefficients coming from C. See [5, Chapter 5] for a
brief review of the Hecke theory of modular forms. However, here we are concerned with
all such cuspforms which can be uniquely written as a Q-linear combination of pairwise
orthogonal eigenforms with Fourier coefficients coming from Q. Note that, in this case,
the sequence {a(pn)} is a linear recurrence sequence of possibly higher degree. We now
turn to discuss the basic theory of linear recurrence sequences. We will also discuss the
bounds of their associated exponential sums.

1.1 Linear recurrence sequences and exponential sums

Let r ≥ 1 be an integer and p be an arbitrary prime number. A linear recurrence sequence
{sn} of order r in Fp consists of a recursive relation

sn+r ≡ ar−1sn+r−1 + · · · + a0sn (mod p), with n = 0, 1, 2, . . . , (2)

and initial values s0, . . . , sr−1 ∈ Fp. Here a0, . . . , ar−1 ∈ Fp are fixed. The characteristic
polynomial ω(x) associated to {sn} is

ω(x) = xr − ar−1xr−1 − · · · − a1x − a0.

We see from Eq. (1) that {a(pn)} is a linear recurrence sequence of order 2 when f is an
eigenform. We shall prove the results in Sect. 2, by studying exponential sums associated
to a much more general class of linear recurrence sequences.
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Under certain assumptions, linear recurrence sequences become periodic modulo p,
see [15, Lemma 6.4] and [18, Theorem6.11].
Let p be a prime number andω(x) be the characteristic polynomial of a linear recurrence

sequence {sn} defined by Eq. (2). If (a0, p) = 1 and at least one of the s0, . . . , sr−1 are not
divisible by p, then the sequence {sn} is periodic modulo p, that is for some T ≥ 1,

sn+T ≡ sn (mod p), n = 0, 1, 2, . . . .

The least positive period is denoted by τ . Moreover, τ ≤ pr − 1 and τ divides T for any
period T ≥ 1 of the sequence {sn}.
In 1953, Korobov [16] obtained bounds for rational exponential sums involving linear

recurrence sequences in residue classes. In particular, for the fields of order p, if {sn} is a
linear recurrence sequence of order r with (a0, p) = 1 and period τ , it follows that

∣∣∣∣∣
∑

n≤τ

ep (sn)

∣∣∣∣∣ ≤ pr/2. (3)

Note that such a bound is nontrivial if pr/2 < τ and asymptotically effective only if
pr/2/τ → 0 as p → ∞. Estimate (3) is optimal in general terms, indeed Korobov [15]
showed that there is a linear recurrence sequence {sn} with length r satisfying

1
2
pr/2 <

∣∣∣∣∣
∑

n≤τ

ep (sn)

∣∣∣∣∣ ≤ pr/2.

In turn, for any given ε > 0, it has been proved that there exists a class of linear recurrence
sequences with a better upper bound

∣∣∣∣∣
∑

n≤τ

ep (sn)

∣∣∣∣∣ ≤ τ 1/2+ε .

However, the proof of the existence is ineffective in the sense that we do not know any
explicit characteristics of such family, see [7, Section 5.1].
The casewhen the associated polynomialω(x) is irreducible inFp[x],waswidely studied.

In particular, from a more general result due to Katz [14, Theorem 4.1.1] it follows that if
ω(0) = 1 then

∣∣∣∣∣
∑

n≤τ

ep (sn)

∣∣∣∣∣ ≤ p(r−1)/2.

Shparlinski [23] improved Korobov’s bound for all nonzero linear recurrence sequences
with irreducible characteristic polynomial ω(x) in Fp[x]. From [23, Theorem 3.1] we get

max
ξ∈F∗

p

∣∣∣∣∣
∑

n≤τ

ep (ξ sn)

∣∣∣∣∣ ≤ τp−ε/(r−1) + r3/11τ 8/11p(3r−1)/22,

for any given ε > 0 and with period τ satisfying that

max
d<r
d|r

gcd(τ , pd − 1) < τp−ε . (4)

In particular, if r is fixed then the upper bound is non trivial for τ ≥ pr/2−1/6+ε .
We already pointed out that the inequality (3) is nontrivial for τ > pr/2+ε , so the most

important case occurs when τ ≤ pr/2+ε . If τ ≤ pr/2+ε , then condition (4) is needed
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to obtain a non trivial bound suggested by an example given in [23, Section 1]. In this
particular example, the exponential sums of type

∣∣∣∣∣∣

(pm−1)/2∑

n=1
ep
(
Tr(ag2n)

)
∣∣∣∣∣∣
= (pm − 1)

2
,

are considered for certain a in F
∗
pm with g a generator of F

∗
pm and m be any even integer.

It is worth noting that {Tr(ag2n)} is indeed a linear recurrence sequence of orderm in Fp.
Moreover, we consider the general case when the associated polynomial ω(x) is not

necessarily irreducible, and deduce the following key result.

Theorem 1 Let p be a large prime number and ε > ε′ > 0. Suppose that {sn} is a
nonzero linear recurrence sequence with positive order and period τ in Fp such that its
characteristic polynomial ω(x) has distinct roots in its splitting field, and (ω(0), p) = 1. Set
ω(x) = ∏ν

i ωi(x) as a product of distinct irreducible polynomials in Fp[x], and for each i, αi
denotes a root ofωi(x). If all polynomialsωi(x) have the same degree, i.e. degωi(x) = r > 1,
and the system τi = ord αi, satisfies

(a) max
d<r
d|r

gcd(τi, pd − 1) < τip−ε , for any 1 ≤ i ≤ ν,

(b) gcd(τi, τj) < pε′
, for some pair i �= j along with Fp(αi) ∼= Fp(αj), (5)

then there exists a δ = δ(ε, ε′) > 0 such that

max
ξ∈F∗

p

∣∣∣∣∣
∑

n≤τ

ep (ξ sn)

∣∣∣∣∣ ≤ τp−δ . (6)

It turns out that, this extends [2, Corollary] due to Bourgain, where all of the irreducible
factors have degree r = 1, while Theorem 1 deals with the case r ≥ 2.
This will be of immense use in what follows, roughly because the characteristic polyno-

mial associated to {a(pn)} have degree two.
Theorem 1 will be essential to establish Theorem 2 and Corollaries 12 and 17. Our

approach, which relies on the sum-product phenomenon, provides an improvement over
Theorem3.1 of [23] for the same class of linear recurrence sequences, obtaining non trivial
exponential sums in a larger range. To be more precise, if p(r) denotes the least prime
divisor of r then any τ > pr/p(r)+ε satisfies

τp−ε > pr/p(r) ≥ max
d<r
d|r

gcd(τ , pd − 1).

In particular, our result works for any τ > pr/p(r)+ε , while bound in [23] is nontrivial if
τ > pr/2−1/6+ε . This is an improvement if p(r) > 2,more precisely when r is odd.

1.2 Main results for exponential sumwith modular forms

We now quickly discuss the main results obtained in this article. In the list, our first result
is the following:

Theorem 2 Let f (z) be an eigenform with rational coefficients a(n). Let P be the set of
primes p such that a(pu) �= 0 for any u ∈ N. Then the following is true.
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(i) The set of primes P satisfies that given p ∈ P , for any 0 < ε < 1/2 there exists a
δ = δ(ε) > 0 such that the following estimate

max
ξ∈F

∗
�

∣∣∣∣∣
∑

n≤τ

e� (ξa(pn))

∣∣∣∣∣ ≤ τ�−δ , (7)

holds for π (y) + O(y2ε) many primes � ≤ y, where the least period τ of the linear
recurrence sequence {a(pn)} (mod �) depends on both p and �, and π (y) denotes the
number of primes up to y which is asymptotically equivalent to y

log y .
(ii) For the exceptional set of primes p /∈ P , let u be the least natural number such that

a(pu) = 0. Then for any 0 < ε < 1/2, there exists a δ = δ(ε) > 0 such that the
following estimate

max
ξ∈F

∗
�

∣∣∣∣∣
∑

n≤τ

e� (ξa(pn))

∣∣∣∣∣ = τ

u + 1
+ O(τ�−δ + u). (8)

holds for π (y) + O(y2ε)many primes � ≤ y.

Roughly speaking, a newform of level N is a normalized eigenform which is not a
cuspform of level N ′ for any proper divisor N ′ of N. For details and basics on modular
forms, we refer the reader to [5]. A newform is said to have complex multiplication (CM)
by a quadratic Dirichlet character φ if f = f ⊗ φ, where we define the twist as

f ⊗ φ =
∞∑

n=1
a(n)φ(n)qn.

In part (i) of Theorem 2, the condition a(pu) �= 0 holds for almost all prime p provided
that f is a newform without CM. This is a consequence of Sato-Tate conjecture and we
shall discuss this again in the proof of Lemma 11. In particular, we have a non trivial
estimate for the following exponential sum

max
ξ∈F

∗
�

∣∣∣∣∣
∑

n≤τ

e� (ξa(pn))

∣∣∣∣∣ . (9)

Let us recall that any general cusp form f can be uniquely written asC-linear combination
of eigenforms. These eigenforms will be called as components of f . We then have the
following result.

Theorem 3 Let f (z) be a cusp form which is not necessarily an eigenform, and can be
written as a Q-linear combination of newforms with rational coefficients. Suppose that
there are r2 many components with CM, then under the assumption of GST hypothesis1

there exists a set of primes p with density at least 2−r2 such that for any 0 < ε < 1/2 there
exists a δ = δ(ε) > 0 for which the following estimate

max
ξ∈F

∗
�

∣∣∣∣∣
∑

n≤τ

e� (ξa(pn))

∣∣∣∣∣ ≤ τ�−δ , (10)

holds for cf π (y) + O(y2ε)many primes � ≤ y, where cf > 0 is a constant.

1See Sect. 4.1 for the discussion about GST hypothesis.
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In both of the above theorems, we took a fixed prime p and looked for primes � for
which a non trivial estimate to (9) holds. However, these results are valid for almost all
primes �, and we do not know explicitly which of the primes are being excluded in this
process. Thus, one may naturally ask, what if we now fix a prime � and find out for how
many primes p the sum at (9) is non trivial. In this regard, we have the following results.

Theorem 4 Let f (z) be a newform of weight k, without CM, and with integer Fourier
coefficients. Consider the setP = {

� prime | (k − 1, � − 1) = 1
}
. Then, for any fixed ε > 0

and any large enough � ∈ P, the set of primes p satisfying

max
ξ∈F

∗
�

∣∣∣∣∣
∑

n≤τ

e� (ξa(pn))

∣∣∣∣∣ ≤ τ�−δ (11)

have density at least 1 + Oε

(
1

�1−3ε

)
, where δ = δ(ε) is same as in Theorem 1.

Intuitively, this theorem can be regarded as the inverse of Theorem 2, and in this
analogy, the following result as the inverse of Theorem 3. Just for the sake of simplicity
we are assuming (k − 1, � − 1) = 1, which can be easily avoided and will be evident from
the proof of the following theorem.

Theorem 5 If f (z) is a cuspform, and can be written as Q linear combination of r many
newforms without CM and with integer coefficients, such that all of these components
satisfies GST hypothesis. Then, for any fixed ε > 0 and large enough �, the set of primes p
satisfying

max
ξ∈F

∗
�

∣∣∣∣∣
∑

n≤τ

e� (ξa(pn))

∣∣∣∣∣ ≤ τ�−δ (12)

have density at least 2−r + Oε

(
1

�1−2ε

)
, where δ = δ(ε) is same as in Theorem 1.

1.3 Waring type problems over finite fields

Given a sequence {xn}, one of the classical questions are to decide whether {xn} is an
additive basis. More precisely, is there an absolute constant k ≥ 1 such that any residue
class λ modulo p can be represented as

xn1 + · · · + xnk ≡ λ (mod p),

for infinitely many primes p?
In this article, we are concerned about the case when {xn} is a linear recurrence sequence

inFp. For a simple sequence2n(mod p), it follows combining a result of Erdős andMurty [6]
and a result of Glibichuk [13] that for almost all primes p, every residue class modulo p
can be represented in the following form

2n1 + · · · + 2n8 (mod p),

for certain positive integers n1, · · · , n8.
Note that 2n(mod p) is a linear recurrence sequence of order 1. For higher order cases,

one can ask about the classical case of Fibonacci sequences. The third author proved
in [11, Theorem 2.2], that given a parameter N → ∞, for π (N )(1 + o(1)) primes p ≤ N,
every residue class modulo p can be written as

Fn1 + · · · + Fn16 ≡ λ (mod p),
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provided that n1, . . . , n16 ≤ N 1/2+o(1).Themethod is based on the distribution properties
of sparse sequences for almost all primes and particular identities of Lucas sequence. It
does not seem easy to extend such ideas for general linear recurrence sequences. In this
article, we prove that if {sn} is a linear recurrence sequence in Z, whose characteristic
polynomial ω(x) ∈ Z[x] is monic, irreducible, and having prime degree, then there exists
an absolute constant k such that every residue class λ(mod p) can be represented as

sn1 + · · · + snk ≡ λ (mod p),

for a set of primes p with positive density. We record this in Theorem 13 in Sect. 6.

2 Exponential sums with linear recurrence sequences
In this section, our main goal is to prove Theorem 1, which is one of our key tool in
establishing several important results of this article. Recalling the example of Shparlinski
in [23, Section 1], we already noticed in Sect. 1.1 that, condition (a) of Theorem 1 is needed
ifω(x) is irreducible inFp[x].Weshall discussmore about this condition later in Remark 1.
Now, we illustrate with an example that all of the gcd(τi, τj)′s cannot be too large. In

other words, we need condition (b) (or some other condition) to obtain a non trivial
bound in Theorem 1. For example, let r = 2 and g be a generator of F

∗
�2
. Then, consider

the sequence

sn = Tr
(
gn(�

2+1)/2 − gn
)
,

with characteristic polynomial (x − g)(x − g�)(x − g (�2+1)/2)(x − g�(�2+1)/2). Note that

τ2 = ord g = �2 − 1 and τ1 = ord g (�
2+1)/2 = �2−1

gcd(�2−1,(�2+1)/2) .

It is easy to see that gcd(�2 − 1, (�2 + 1)/2) = 1, so gcd(τ1, τ2) = �2 − 1.On another hand
we note that gcd(τ1, � − 1) = � − 1. Then, one can show that

�2−1∑

n=1
e� (sn) =

�2−1∑

n=1
e�

(
Tr

(
gn(�

2+1)/2 − gn
))

=
(�2−1)/2∑

n=1
e�

(
Tr

(
g2n(�

2+1)/2 − g2n
))

+
(�2−1)/2∑

n=1
e�

(
Tr

(
g (2n−1)(�2+1)/2 − g2n−1

))

= �2 − 1
2

+
(�2−1)/2∑

n=1
e�

(
Tr

(−2g2n−1)) = �2 − 1
2

+
∑

h∈H
e� ( Tr (−2gh)) ,

where H = 〈g2〉.
Let p be any prime and q be any power of p. Then, the classical theorem about additive

sums for one-variable polynomial, due to A. Weil (see [17, Theorem 3.2]), states that, for
a given polynomial f (x) ∈ Fq[x] with degree d, d < q, gcd(d, q) = 1 and a nontrivial
additive character ψ in Fq, we have

∣∣∣∣∣∣

∑

x∈Fq

ψ(f (x))

∣∣∣∣∣∣
≤ (d − 1)√q. (13)
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Consider

1 + 2
∑

h∈H
e� ( Tr (−2gh)) =

∑

x∈F
�2

ψ(x2),

where ψ(ω) = e� ( Tr (−2gω)) is a nonzero additive character of F�2 . Applying (13) with
f (x) = x2, it follows that

∣∣∣∣∣
∑

h∈H
e� ( Tr (−2gh))

∣∣∣∣∣ ≤
∣∣∣∣∣∣

∑

x∈F
�2

ψ(x2)

∣∣∣∣∣∣
≤ �.

Therefore, the linear recurrence sequence {sn} satisfies
�2−1∑

n=1
e� (sn) = �2 − 1

2
+ O(�).

Wenowneed todiscuss somenecessary background. LetK be afinite field of characteristic
p and F be an extension of K with [F : K ] = r. The trace function TrF/K : F → K is
defined by

TrF/K (z) = z + zp + · · · + zp
r−1

, z ∈ F.

The following properties of TrF/K (z) are well known.

TrF/K (az + w) = aTrF/K (z) + TrF/K (w), for all a ∈ K, z, w ∈ F. (14)

TrF/K (a) = ra, for any a ∈ K. (15)

TrF/K (zp) = TrF/K (z), for any z ∈ F. (16)

Throughout this section, F = Fq , K = Fp with q = pr and we will simply write Tr (z)
instead TrF/K (z).
Let {sn} be a linear recurrence sequence of order r ≥ 1 in Fp with characteristic polyno-

mialω(x) inFp[x]. It is well known that nth-term can bewritten in terms of the roots of the
characteristic polynomial, see Theorem 6.21 in [18]. Therefore, if the roots α0, . . . ,αr−1
of ω(x) are all distinct in its splitting field, then

sn =
r−1∑

i=0
βiα

n
i , for n = 0, 1, 2, . . . , (17)

where β0, . . . ,βr−1 are uniquely determined by initial values s0, . . . , sr−1, and belong to
the splitting field of ω(x) over Fp. If the characteristic polynomial ω(x) is irreducible and
α is a root, then its r distinct conjugates are

α,αp, . . . ,αpr−2
,αpr−1

.

Hence, the coefficients sn are given by

sn =
r−1∑

i=0
βiα

pin, n = 0, 1, 2, 3, . . . .

One of our main tools is the bound for Gauss sum in finite fields given by Bourgain and
Chang [3, Theorem 2]. This will be required to prove Theorem 1. Assume that for a given
α ∈ Fq and ε > 0,
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such that ord α = t satisfies

t > pε and max
1≤d<r
d|r

gcd(t, pd − 1) < tp−ε . (18)

Then, there exists a δ = δ(ε) > 0 such that for any nontrivial additive character ψ of Fq,
we have

∣∣∣∣∣∣

∑

n≤t
ψ(αn)

∣∣∣∣∣∣
≤ tp−δ .

Note that the second assumption in (18) implies the first one whenever r ≥ 2.

2.1 Proof of Theorem 1

We proceed by induction over ν. Before that, following properties (14) and (15) of trace
function we write

sn = Tr
(
r−1sn

) = r−1 Tr
(

ν∑

i=1
(βi,0α

n
i + · · · + βi,r−1α

pr−1n
i )

)

= r−1
ν∑

i=1

r−1∑

j=0
Tr

(
βi,jα

pjn
i

)
.

By the assumption, [Fp(αi) : Fp] = r for any 1 ≤ i ≤ ν. In other words, any such αi is in
Fpr . We then have, r = [Fp(α1, . . . ,αν) : Fp] and zpr = z for any z ∈ Fp(α1, . . . ,αν). In
addition, from (16) it follows that, Tr (zp) = Tr (z) for any z ∈ Fp(α1, . . . ,αν). Then, for
each pair (i, j), raising each argument βi,jα

pjn
i to the power pr−j

Tr
(
βi,jα

pjn
i

)
= Tr

(
β
pr−j

i,j α
pjn·pr−j

i

)
= Tr

(
β
pr−j

i,j α
prn
i

)
= Tr

(
β
pr−j

i,j αn
i

)
.

This implies that

sn = r−1
ν∑

i=1

r−1∑

j=0
Tr

(
β
pr−j

i,j αn
i

)
= r−1

ν∑

i=1
Tr

⎛

⎝

⎛

⎝
r−1∑

j=0
β
pr−i

i,j

⎞

⎠αn
i

⎞

⎠

= Tr
(
γ1α

n
1
)+ · · · + Tr

(
γνα

n
ν

)
, (19)

where γi = r−1∑r−1
j=0 β

pr−i

i,j , for each 1 ≤ i ≤ ν.
The case ν = 1 follows fromBourgain andChang [3, Theorem 2].We shall now proceed

inductively, and ν = 2 will be the base case. We start by denoting h = gcd(τ1, τ2). It is
clear that lcm(τ1, τ2) = τ1τ2/h is a period of sn, then

∣∣∣∣∣
∑

n≤τ

ep (ξ sn)

∣∣∣∣∣ = τ

τ1τ2/h

∣∣∣∣∣∣∣

∑

n≤ τ1τ2
h

ep (ξ sn)

∣∣∣∣∣∣∣
.

Hence, it is enough to prove that
∣∣∣∣∣∣∣

∑

n≤ τ1τ2
h

ep (ξ sn)

∣∣∣∣∣∣∣
≤ τ1τ2

h
p−δ , with (ξ , p) = 1,



J. Bajpai et al. Res. Number Theory (2022) 8:18 Page 11 of 32 18

for some δ = δ(ε) > 0.Dividing the range of the sumn ≤ τ1τ2/h into the formn = mh+u0
withm ≤ τ1τ2/h2 and 0 ≤ u0 ≤ h − 1, we have

∣∣∣∣∣∣∣

∑

n≤ τ1τ2
h

ep (ξ sn)

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣

h−1∑

u0=0

∑

n≤ τ1τ2
h2

ep
(
ξ snh+u0

)
∣∣∣∣∣∣∣
≤

h−1∑

u0=0

∣∣∣∣∣∣∣

∑

n≤ τ1τ2
h2

ep
(
ξ snh+u0

)
∣∣∣∣∣∣∣

≤ h × max
0≤u0≤h−1

∣∣∣∣∣∣

∑

n≤τ1τ2/h2
ep
(
ξ snh+u0

)
∣∣∣∣∣∣
. (20)

Let (n1, n2) be a tuplewithni ≤ τi
h . Since gcd(

τ1
h ,

τ2
h ) = 1, byChinese remainder theorem,

there exist integersm1, m2 with gcd(m1, τ1
h ) = gcd(m2, τ2

h ) = 1, such that
∣∣∣
{
n
(
mod τ1τ2

h2

)
: 1 ≤ n ≤ τ1τ2

h2
}∣∣∣=

∣∣∣
{
n1m1

τ2
h +n2m2

τ1
h

(
mod τ1τ2

h2

)
: 1 ≤ ni ≤ τi

h

}∣∣∣ .

(21)

Moreover, the pair (m1, m2) has the following property: given (n1, n2),with 1 ≤ ni ≤ τi/h,
then n = n1m1

τ2
h + n2m2

τ1
h satisfies

n ≡ n1
(
mod τ1

h
)
and n ≡ n2

(
mod τ2

h
)
,

and n is unique modulo τ1τ2
h2 . Since τ1

h = ord αh
1 and τ2

h = ord αh
2 , then

αhn
i = α

h
(
n1m1

τ2
h +n2m2

τ1
h
)

i = α
hni
i , 1 ≤ i ≤ 2. (22)

Combining (21) and (22), we have
∣∣∣∣∣∣∣

∑

n≤ τ1τ2
h2

ep
(
ξ snh+u0

)
∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣

∑

n1≤ τ1
h

ep
(
Tr

(
ξγ1α

n1h+u0
1

))
∣∣∣∣∣∣∣

×

∣∣∣∣∣∣∣

∑

n2≤ τ2
h

ep
(
Tr

(
ξγ2α

n2h+u0
2

))
∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣

∑

n1≤ τ1
h

ep
(
Tr

(
γ ′
1α

n1h
1

))
∣∣∣∣∣∣∣
×

∣∣∣∣∣∣∣

∑

n2≤ τ2
h

ep
(
Tr

(
γ ′
2α

n2h
2

))
∣∣∣∣∣∣∣
, (23)

with γ ′
1 = ξγ1α

u0
1 , γ ′

2 = ξγ2α
u0
2 in Fp(α1,α2). Since {sn} is a nonzero sequence, therefore

γ ′
i �= 0, at least for some 1 ≤ i ≤ 2. First, let us assume that γ ′

1, γ
′
2 �= 0.

Each ep
(
Tr

(
ξγ ′

i z
))
corresponds to a nontrivial additive character, sayψi(z), inFp(αi) =

Fpr . In order to satisfy condition (18), we first recall assumptions h < pε′ , ε > ε′ > 0
and maxd<r

d|r
gcd(τi, pd − 1) < τip−ε for some i ∈ {1, 2}. Without loss of generality, let us

assume that i = 1. Then, for any d|r with 1 ≤ d < r, we have

gcd
(

τ1
h , p

d − 1
)

≤ gcd(τ1, pd − 1) < τ1p−ε <
τ1
h
p−(ε−ε′).

Therefore, by Bourgain and Chang [3, Theorem 2] it follows that
∣∣∣∣∣∣

∑

n1≤τ1/h
ep
(
Tr

(
γ ′
1α

n1h
1

))
∣∣∣∣∣∣
=
∣∣∣∣∣∣

∑

n1≤τ1/h
ψ1(αn1h

1 )

∣∣∣∣∣∣
≤ τ1

h
p−δ .
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On the other hand, bounding trivially we have
∣∣∣∣∣∣

∑

n2≤τ2/h
ep
(
Tr

(
γ ′
2α

n2h
2

))
∣∣∣∣∣∣
=
∣∣∣∣∣∣

∑

n2≤τ2/h
ψ2(αn2h

2 )

∣∣∣∣∣∣
≤ τ2

h
.

Thus, combining above equations with (20) and (23) we get

max
ξ∈F∗

p

∣∣∣∣∣∣∣

∑

n≤ τ1τ2
h

ep (ξ sn)

∣∣∣∣∣∣∣
≤ h × τ1τ2

h2
p−δ = τ1τ2

h
p−δ .

Now, let us assume that one of the λ′
i = 0, say for i = 2. Arguing exactly as few lines

above, it follows from assumption (a) that
∣∣∣∣∣∣

∑

n1≤τ1/h
ep
(
Tr

(
γ ′
1α

n1h
1

))
∣∣∣∣∣∣
≤ τ1

h
p−δ , and

∣∣∣∣∣∣

∑

n2≤τ2/h
ep
(
Tr

(
γ ′
2α

n2h
2

))
∣∣∣∣∣∣
= τ2

h
.

Hence, the desired bound follows. This conclude the case ν = 2.
Now, we proceed by induction over ν, and assume Theorem 1 to be true up to ν − 1.

We follow the idea due to Garaev [9, Section 4.4]. Considering (19) and periodicity, for
any t ≥ 1 we get

τ

∣∣∣∣∣
∑

n≤τ

ep (ξ sn)

∣∣∣∣∣

2t

=
∑

m≤τ

∣∣∣∣∣
∑

n≤τ

ep (ξ sm+n)

∣∣∣∣∣

2t

=
∑

m≤τ

∣∣∣∣∣
∑

n≤τ

ep
(
ξ ( Tr

(
γ1α

m+n
1

)+ · · · + Tr
(
γνα

m+n
ν

)
)
)
∣∣∣∣∣

2t

≤
∑

n1≤τ

· · ·
∑

n2t≤τ

∣∣∣∣∣
∑

m≤τ

ep

(
ξ

ν∑

i=1
Tr

(
γiα

m
i
(
α
n1
i + · · · − α

n2t
i
))
)∣∣∣∣∣ .

Raising to the power 2t, and applying Cauchy–Schwarz, we have

τ 2t

∣∣∣∣∣
∑

n≤τ

ep (ξ sn)

∣∣∣∣∣

4t2

≤ τ 2t(2t−1)

×
∑

n1≤τ

· · ·
∑

n2t≤τ

∣∣∣∣∣
∑

m≤τ

ep

(
ξ

ν∑

i=1
Tr

(
γiα

m
i
(
α
n1
i + · · · − α

n2t
i
))
)∣∣∣∣∣

2t

.

Given (λ1, · · · , λν) ∈ F
ν
q, let Jt (λ1, · · · , λν) denote the number of solutions of the system

⎧
⎪⎪⎨

⎪⎪⎩

α
n1
1 + · · · + α

nt
1 = α

nt+1
1 + · · · + α

n2t
1 + λ1

...
...

...
...

...
α
n1
ν + · · · + α

nt
ν = α

nt+1
ν + · · · + α

n2t
ν + λν

with 1 ≤ n1, · · · , n2t ≤ τ . Therefore,
∣∣∣∣∣
∑

n≤τ

ep (ξ sn)

∣∣∣∣∣

4t2

≤ τ 4t
2−4t

∑

λ1∈Fq

· · ·
∑

λν∈Fq

Jt (λ1, · · · , λν)

×
∣∣∣∣∣
∑

m≤τ

ep

(
ξ

ν∑

i=1
Tr

(
γiλiα

m
i
)
)∣∣∣∣∣

2t

. (24)
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Note that writing Jν(λ1 · · · , λν) in terms of character sums, it follows that

Jt (λ1 · · · , λν) = 1
qν

∑

x1∈Fq

· · ·
∑

xν∈Fq

∣∣∣∣∣
∑

n≤τ

ep
(
Tr

(
x1αn

1
)) · · · ep

(
Tr

(
xνα

n
ν

))
∣∣∣∣∣

2t

× ep ( Tr (x1λ1)) · · · ep
(
Tr

(
xνα

n
ν

))

≤ 1
qν

∑

x1∈Fq

· · ·
∑

xν∈Fq

∣∣∣∣∣
∑

n≤τ

ep
(
Tr

(
x1αn

1
)) · · · ep

(
Tr

(
xνα

n
ν

))
∣∣∣∣∣

2t

≤ Jt (0, . . . , 0) =: Jt,ν .

In particular, we note that Jt,ν ≤ Jt,ν−1. From (24), it follows that

∣∣∣∣∣
∑

n≤τ

ep (ξ sn)

∣∣∣∣∣

4t2

≤ τ 4t
2−4t Jt,ν

∑

m1≤τ

· · ·
∑

m2t≤τ

∑

λ1∈Fq

· · ·
∑

λν∈Fq

ep

(
ν∑

i=1
Tr

(
ξγiλi(αm1

i + · · · − α
m2t
i )

)
)

.

Note that aγ λ, with aγ �= 0, runs over λ ∈ Fq , then ep ( Tr (aθλz)) runs through all
additive characters ψ in F̂q, evaluated at z. Then, the above expression can be written as

∣∣∣∣∣
∑

n≤τ

ep (ξ sn)

∣∣∣∣∣

4t2

≤ τ 4t
2−4t Jt,ν

∑

m1≤τ

· · ·
∑

m2t≤τ

ν∏

i=1

⎛

⎝
∑

x∈Fq

ep
(
x(αm1

i + · · · − α
m2t
i )

)
⎞

⎠

≤ τ 4t
2−4tqν J2t,ν ≤ τ 4t

2−4tqν J2t,ν−1. (25)

We now require an estimate for Jt,ν−1, and write

Jt,ν−1 = 1
qν−1

∑

λ1∈Fq

· · ·
∑

λν−1∈Fq

∣∣∣∣∣
∑

m≤τ

ep
(
Tr

(
λ1α

m
1 + · · · + λν−1α

m
ν−1

))
∣∣∣∣∣

2t

= τ 2t

qν−1 + O

⎛

⎜⎜⎝

⎛

⎜⎜⎝ max
(λ1 ,...,λν−1)∈F

ν−1
q

(λ1 ,...,λν−1) �=0

∣∣∣∣∣
∑

m≤τ

ep
(
Tr

(
λ1α

m
1 + · · · + λν−1α

m
ν−1

))
∣∣∣∣∣

⎞

⎟⎟⎠

2t⎞

⎟⎟⎠ .

(26)

Finally, we note that s′m = Tr
(
λ1αm

1 + · · · + λν−1αm
ν−1

)
defines a linear recurrence

sequence with period τ ′ dividing τ , which in particular satisfies induction hypothesis.
Therefore

∣∣∣∣∣
∑

m≤τ

ep
(
Tr

(
λ1α

m
1 + · · · + λν−1α

m
ν−1

))
∣∣∣∣∣ ≤ τp−δ′

,

for some δ′ = δ′(ε) > 0. Now, taking t > d(ν − 1)/2δ′ (where d = [Fq : Fp]) and
combining with (26), we get

Jt,ν−1 	 τ 2t

qν−1 .
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We conclude the proof combining the above estimate with (25) to get2

max
ξ∈F∗

p

∣∣∣∣∣
∑

n≤τ

ep (ξ sn)

∣∣∣∣∣ ≤ τp−δ , with δ = d(ν−2)
4t2 .

The following is an immediate corollary of this theorem which will be quite handy in
establishing several results in Sects. 3 and 6.

Corollary 6 Suppose that {sn} is a nonzero linear recurrence sequence of order r ≥ 2 such
that its characteristic polynomial ω(x) is irreducible in Fp[x]. If its period τ satisfies

max
d<r
d|r

gcd(τ , pd − 1) < τ p−ε ,

then there exists a δ = δ(ε) > 0 such that

max
ξ∈F∗

p

∣∣∣∣∣
∑

n≤τ

ep (ξ sn)

∣∣∣∣∣ ≤ τp−δ .

Remark 1 It is possible to relax the condition (a) by assuming that

max
d<r
d|r

gcd(τi, pd − 1) < τip−ε

holds for some 1 ≤ i ≤ ν for which λ′
i �= 0, where λ′

i is defined in the proof of Theorem 1.
Also, note that λ′

i = 0 if and only if λi = 0.
Since {sn} is a nonzero linear recurrence sequence, there exists some 1 ≤ i ≤ ν for

which λi �= 0.We discussed in Sect. 1.1 that why (a) (or some other condition) is needed
to prove the irreducible case of Theorem 2. Now, for the reducible case, some of the λi
could be 0. For the worst case scenario, let us assume that only one of them is nonzero,
say for i = 1. Then, it follows from (19) that, we are back to considering the irreducible
case and then we need the condition (a) for i = 1. In particular, we need (a) (or some
other condition) for each irreducible component of the underlying ω(x).

3 Exponential sums for modular forms
In this section, we study the effect of linear recurrence sequence and Theorem 1 in the
behaviour of the exponential sums associated with certain Fourier coefficients of modular
forms. As a consequence, we obtain interesting results which have been summarized
earlier in the form of Theorems 2 and 3.

3.1 Order of the roots of the characteristic polynomial

In the case of normalized eigenforms, the sequence {a(pn)} defines a linear recurrence
sequence of order two when p � N, otherwise it is of order one. This is one of the tools
for Theorem 2. However, we do not need to assume that the form is normalized because
the normalizing factor is in Q, and we can realize that to be an element of F

∗
� for any large

enough prime �. Before going into the proof of this theorem, we develop a tool which will
be quite useful throughout. We state it in the form of following lemma.

2To get a non trivial estimate, we must have a non zero δ. This is true when ν > 2. Hence our induction step starts
from ν = 2.
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Lemma 7 Let ω(x) = x2 + ax + b ∈ Z[x] be a quadratic polynomial with b �= 0 and let
α,β be its roots such that none of the α,β or αβ−1 is a root of unity. For any prime �, let
α�, β� be its roots in the splitting field of ω(x) over F�.
Then, given 0 < ε < 1/2, for π (y) + O(y2ε)many primes � ≤ y, we have

ord α� > �ε , ord β� > �ε and ord (α�β
−1
� ) > �ε .

Proof Given a large positive parameter T, we begin by considering the polynomial

GT (x) =
∏

t≤T
(xt − 1)(x2t − bt ) ∈ Z[x].

It is clear that ω(x) (mod �) has distinct roots for all but finitely many primes �, since
a2 − 4b �= 0. For any such prime �, let α� and β� be the distinct roots in its splitting field.
We now consider the resultant Res(ω(x), GT (x)), and note that

Res(ω(x), GT (x)) (mod �) =
∏

1≤i≤3T
(α� − μi)(β� − μi),

where each μi is a root of GT (x) in its splitting field over F�.
In particular, Res(ω(x), GT (x)) ≡ 0 (mod �) if and only ifω(x) (mod �) andGT (x)(mod �)

have common roots in some finite extension of F�.Additionally, since α�β� = b, it follows
that ord (α�β

−1
� ) ≤ T if and only if α2t

� − bt = 0 (or β2t
� − bt = 0), for some t ≤ T.

Therefore, α� (or β�) is a common root of ω(x) (mod �) and GT (x) (mod �) if ord α� or
ord (α�β

−1
� ) (or ord β� or ord (α�β

−1
� )) is less than T. Now, the Sylvester matrix of ω(x)

and GT (x) is a square matrix of order 2 + deg(GT (x)) 	 T 2, and entries bounded by an
absolute constant M (which depends on a, b and not on � or the parameter T ). Then, by
Hadamard’s inequality, the determinant

Res(ω(x), GT (x)) ≤ TT 2 × MT 2 	 M2T 2 log T .

Note that Res(ω(x), GT (x)) is zero if and only if αt = 1,βt = 1 or (αβ−1)t = 1 for some
t ≤ T, which, following our assumption, can not happen. In particular, the resultant has
at most O

(
T 2)many distinct prime divisors. This shows that

|{� prime | ord α� ≤ T or ord β� ≤ T or ord α�β�
−1 ≤ T }| = O(T 2).

Choosing T = yε , the number of primes � ≤ y such that

ord α� ≤ �ε or ord β� ≤ �ε or ord (α�β
−1
� ) ≤ �ε

is O
(
y2ε

)
. ��

Let us now proceed to prove the main result of this section.

3.2 Proof of Theorem 2

If p | N, then a(pn) = a(p)n for any n.We only need to consider

max
ξ∈F

∗
�

∣∣∣∣∣
∑

n≤τ

e� (ξa(p)n)

∣∣∣∣∣ . (27)

If p /∈ P , then there exists u such that a(pu) = 0. Since p | N, we have a(p) = 0. In this
case, the sum is O(1) because we have τ = 1.
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On the other hand, if p ∈ P , then for any prime � large enough τ is simply the order of
a(p) (mod �) in F

∗
� . Due to Lemma 7, we may assume that τ > pε holds for π (y) + O(y2ε)

many primes � < y. Hence, this case is settled down by [4, Theorem 6].
Let us now consider the case p � N . The characteristic polynomial of (1) is

ω(x) = x2 − a(p)x + pk−1, (28)

and has discriminant a2(p) − 4pk−1. We note that in our case the discriminant does
not vanish, otherwise |a(p)| = 2p(k−1)/2 is absurd, with a(p) being integer and p(k−1)/2

irrational. Let P be the set of all primes. We divide the proof for primes p ∈ P and
p ∈ P \ P . Since a2(p) − 4pk−1 �= 0, for any p ∈ P , we write a2(p) − 4pk−1 = u2Dp, with
Dp < 0 square-free and u �= 0. Let us split the cases according to Dp (mod �) is quadratic
residue, zero or non quadratic residue modulo �. Set

P = P0 ∪ P1 ∪ P−1, where Pν =
{
� ∈ P :

(Dp
�

)
= ν

}
.

For ν = 0, 1,−1, we also define

Pν(x) = Pν ∩ [1, x], πν(x) = ∣∣Pν(x)
∣∣ and κν = lim

x→∞
πν(x)
π (x)

.

It is clear that πν(x) = π (x)(κν + o(1)), and κ0 + κ1 + κ−1 = 1.
Note that for a given prime p, the associated polynomialω(x)(mod �) has a single root in

F� if and only if u2Dp ≡ 0(mod �). Since such equation has finitely many solutions for �,
we get κ0 = 0.On the other hand, Chebotarev’s density theorem implies that the uniform
distribution of primes � such that ω(x) (mod �) is irreducible or has distinct roots in F�.
Equivalently, the primes � satisfying

(
Dp
�

)
= ±1 are distributed in the same proportion,

therefore κ−1 = κ1 = 1/2. We now turn to establish nontrivial exponential sums for
{a(pn)}(mod �) with � ∈ Pν , for ν = ±1.

Case 1. � ∈ P−1:

we want to show that the inequality (7) is satisfied by π (y)
2 + O(y2ε) many primes � ≤ y

in P−1. In this case the associated polynomial (28) is irreducible modulo �, then the idea
is to employ Corollary 6. Let α and β = α� be the conjugate roots of (28) in its splitting
field F�(α). For a given ε > 0, from Lemma 7 it follows that for π (y)+O(y2ε) many primes
� ≤ y, the following inequalities

ord α� = ord α > �ε and ord αβ−1 = ord α1−� > �ε (29)

hold. Combining the identity

ord α�−1 = ord α

gcd( ord α, � − 1)

with the second inequality of (29), we get

gcd( ord α, � − 1) = ord α

ord α�−1 = ord α

ord α1−�
< ( ord α)�−ε .

Applying Corollary 6 we complete the proof of this case.
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Case 2. � ∈ P1:

let α,β be the roots of ω(x)(mod �) inside F
∗
� . From (17) it follows that for n ≥ 0, a(pn) ≡

cαn + dβn(mod �), for some constants c, d in F�, with (α,β) �= (0, 0). It is clear that � − 1
is a period of the sequence a(pn)(mod �), and hence τ divides � − 1.We have

∑

n≤τ

e� (ξa(pn)) = τ

� − 1
∑

n≤�−1
e� (ξa(pn)) = τ

� − 1
∑

n≤�−1
e� (ξ (cαn + bβn)) .

From Lemma 7, there is a subset of P1 with π (y)
2 + O(y2ε) many primes � ≤ y such that

ord α, ord β and ord (αβ−1) are bigger than �ε . It follows from [2, Corollary, page 479]
that there exists a δ = δ(ε) > 0 such that

max
(c,d)∈F�×F�

(c,d) �=(0,0)

∣∣∣∣∣∣

∑

n≤�−1
e� (cαn + dβn)

∣∣∣∣∣∣
≤ �1−δ .

Hence, (i) of Theorem 2 holds. Now, assume that p belongs to the exceptional set P \ P ,
that is a(pu) = 0 for some u ≥ 1.We consider u = u(p) to be the least such integer. Since
the discriminant is nonzero (the roots α and β of (28) are distinct), we get3

a(pu) = αu+1 − βu+1

α − β
= 0.

Set b(u + 1) = a(pu), then it follows that for all n ≥ 1 we have

b(n(u + 1)) = a(pn(u+1)−1) = αn(u+1) − βn(u+1)

α − β
= 0.

Therefore,

∑

n≤τ

e� (ξa(pn)) =
τ−1∑

n=0
e� (ξb(n + 1)) =

⎛

⎝
�τ/(u+1)�∑

n=0

u∑

e=0
e� (ξb(n(u + 1) + e))

⎞

⎠

+ O(u)

=
⎛

⎝
�τ/(u+1)�∑

n=0
e� (ξb(n(u + 1))) +

u∑

e=1

�τ/(u+1)�∑

n=0
e� (ξb(n(u + 1) + e))

⎞

⎠

+ O(u)

= � τ

u + 1
� +

⎛

⎝
u∑

e=1

�τ/(u+1)�∑

n=0
e� (ξb(n(u + 1) + e))

⎞

⎠+ O(u). (30)

First of all observe that u is odd. As otherwise, if u is even then we would get

αu+1 + βu+1 = 2αu+1 = ±2p
(u+1)(k−1)

2 ,

which is absurd asαu+1+βu+1 is a rational, butp
(u+1)(k−1)

2 is not.Now, for any 0 < e < u+1
we have

b((u + 1)n + e) = α(u+1)n (αe − βe)
α − β

=
(
±p

(u+1)(k−1)
2

)n
a(pe−1),

where the sign on the right hand side above depends on the sign of αu+1. Without loss
of generality, we are assuming that this sign is negative. It is easy to see that our next

3The explicit expression of a(pu) can be obtained by using induction on u along with the fact that α + β = a(p),αβ =
pk−1 and the recurrence relation at (1).
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argument applies to the positive sign case as well. Since u is fixed, so are all the e’s up to
u− 1. In particular, we may consider large primes � for which all of the a(pe) �≡ 0(mod �)
for any 1 ≤ e ≤ u − 1. Then, we have

τ/(u+1)∑

n=0
e� (ξb(n(u + 1) + e)) =

τ/(u+1)∑

n=0
e�

(
ξ
(
−p

(u+1)(k−1)
2

)n
a(pe−1)

)
.

Due to Lemma 7, we may assume that tu = ord (−p(k−1)(u+1)/2) > �ε holds for π (y) +
O(y2ε) many primes � ≤ y. Now, by [4, Corollary 1] it follows that

∣∣∣∣∣∣

∑

n≤t
e�

(
ξ
(
−p

(u+1)(k−1)
2

)n
a(pe−1)

)
∣∣∣∣∣∣
≤ t�−δ , for some δ = δ(ε/2) > 0, (31)

and for any tu ≥ t > �ε .
Writing [τ/(u + 1)] = qtu + r, with 0 ≤ r < tu it follows that

∑

n≤τ/(u+1)
e�

(
ξα(u+1)na(pe−1)

)
= q

∑

n≤tu

e�

(
ξα(u+1)na(pe−1)

)

+
∑

n≤r
e�

(
ξα(u+1)na(pe−1)

)
.

The estimate
∣∣∣
∑

n≤tu e�

(
ξα(u+1)na(pe−1)

)∣∣∣ ≤ tu�−δ follows from (31). If r ≤ �ε/2, then

we get trivially
∣∣∣
∑

n≤r e�

(
ξα(u+1)na(pe−1)

)∣∣∣ ≤ �ε/2. If �ε/2 ≤ r < tu, then from (31) it
follows that

∣∣∣∣∣
∑

n≤r
e�

(
ξα(u+1)na(pe−1)

)∣∣∣∣∣ ≤ tu�−δ .

Therefore,
∣∣∣∣∣
∑

n≤r
e�

(
ξα(u+1)na(pe−1)

)∣∣∣∣∣ ≤ max
{
�ε/2, tu�−δ

}
.

Recalling that tu ≥ �ε , we can also assume that tu�−δ ≥ �ε/2 by taking small enough δ.
Thus,

∣∣∣∣∣∣

∑

n≤τ/(u+1)
e�

(
ξα(u+1)na(pe−1)

)
∣∣∣∣∣∣
≤ (qtu + tu)�−δ 	 τ

u + 1
�−δ .

Finally, combining the above inequality with (30) we obtain

max
ξ∈F

∗
�

∣∣∣∣∣
∑

n≤τ

e� (ξa(pn))

∣∣∣∣∣ =
⌊

τ

u + 1

⌋
+ O

(
τ�−δ + u

)

= τ

u + 1
+ O

(
τ�−δ + u

)
.

This conclude the proof for all exceptional set of primes p ∈ P \ P .
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3.3 Consequences of Theorem 2

Let us consider an exponential sum of type S(p, x,α) = ∑
pn≤x e(αa(pn)), for α ∈ [0, 1].

As one of the consequences of Theorem 2, we want to study this exponential sum when
α is a rational whose denominator is a prime. In this regard, we have the following result.

Corollary 8 Let f be an eigenform of weight k and level N with rational coefficient. Then
for a given 0 < ε < 1/2, there exists a δ(ε) > 0 such that for at least � (log x)1−δ/(2+δ)

log log x many
primes �, we have the following estimates:

max
ξ∈F

∗
�

∣∣∣∣∣∣

∑

pn≤x
e� (ξa(pn))

∣∣∣∣∣∣
=

⎧
⎪⎪⎨

⎪⎪⎩

O
(
(log x/ log p)1−δ/(2+δ)

)
if p /∈ P

1
u+1

log x
log p + O

(
(log x/ log p)1−δ/(2+δ)

)
if p ∈ P

.

Proof Consider the same δ := δ(ε) as in Theorem 2 and any prime

� ∈
[
(log x/ log p)1/2−δ/(4+2δ), 2(log x/ log p)1/2−δ/(4+2δ)

]
.

Following Theorem 2, we have

max
ξ∈F

∗
�

∣∣∣∣∣
∑

n≤τ

e� (ξa(pn))

∣∣∣∣∣ ≤ τ

�δ
(32)

holds, for at least � (log x)1−δ/(2+δ)

log log x primes �. For these primes, we also have τ ≤ �2 <
log x
log p .

In particular,

max
ξ∈F

∗
�

∣∣∣∣∣∣

∑

pn≤x
e� (ξa(pn))

∣∣∣∣∣∣
≤ log x

�δ log p
+ O

(
�2
) = O

(
(log x/ log p)1−δ/(2+δ)

)
.

On the other hand, let p ∈ P be a prime, then by Theorem 2 we have

max
ξ∈F

∗
�

∣∣∣∣∣
∑

n≤τ

e� (ξa(pn))

∣∣∣∣∣ = τ

u + 1
+ O

( τ

�δ
+ u

)
,

holds, for some u depending on p, and for at least � (log x)1−δ/(2+δ)

log log x primes �. Due to
Lemma 7, we can assume that τ > �δ holds by choosing small enough δ, for at least
� (log x)1−δ/(2+δ)

log log x primes �. Arguing similarly as in the previous case, we get the desired
main term, and the error term that we get

O
(

log x
�δ log p

+ u log x
τ log p

)
= O

(
log x

�δ log p

)
= O

(
(log x/ log p)1−δ/(2+δ)

)
,

where the last equality holds because τ > �δ . ��

Corollary 9 Let f be an eigenform of weight k and level N with rational coefficients. For
π (y) + O(y2ε)many primes � ≤ y we have the following property. Given 0 < ε < 1/2 and
p1, · · · , pν be any set of distinct primes such that a(pui ) �= 0 for all u ≥ 1 and 1 ≤ i ≤ ν,
there exists a δ = δ(ε) > 0 such that

max
ξ∈F

∗
�

∣∣∣∣∣
∑

n1≤τ1

· · ·
∑

nν≤τν

e�

(
ξa(pn11 · · · pnν

ν )
)
∣∣∣∣∣ ≤ τ1 · · · τν�

−δ .
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Proof Set

Sν(ξ ) =
∣∣∣∣∣
∑

n1≤τ1

· · ·
∑

nν≤τν

e�

(
ξa(pn11 · · · pnν

ν )
)
∣∣∣∣∣ .

We proceed by induction. Case ν = 1 is done by Theorem 2. Now, by multiplicativity it
follows that

|Sν(ξ )| ≤
∑

n1≤τ1

∣∣∣∣∣
∑

n2≤τ2

· · ·
∑

nν≤τν

e�

(
ξa(pn11 )a(pn22 · · · pnν

ν )
)
∣∣∣∣∣

≤ τ2 · · · τν

∑

n1≤τ1
a(pn11 )≡0 (mod �)

1 +
∑

n1≤τ1
a(pn11 ) �≡0 (mod �)

∣∣∣∣∣
∑

n2≤τ2

· · ·
∑

nν≤τν

e�

(
ξa(pn11 )a(pn22 · · · pnν

ν )
)
∣∣∣∣∣

By induction hypothesis, the second term on the right hand side of the above equation
is bounded by τ1τ2 · · · τν�

−δ , for some δ > 0 depending on ε.On the other hand, note that∑
n1≤τ1

a(pn11 )≡0 (mod �)
1 counts the number of solutions of the congruence

a(pn1) ≡ 0 (mod �), n ≤ τ1.

Writing it as exponential sum we get

∑

n1≤τ1
a(pn11 )≡0 (mod �)

1 = 1
�

�−1∑

x=0

∑

n1≤τ1

e�

(
x(a(pn11 ))

)

= τ1
�

+ O
(
max
x∈F

∗
�

∣∣∣∣∣
∑

n1≤τ1

e�

(
x(a(pn11 ))

)
∣∣∣∣∣

)
.

We can bound the error term by Theorem 2 and without loss of generality assuming
δ < 1, we get the sum above is simply τ1

�
+ O(τ1�−δ). This is further bounded by 2τ1�−δ ,

because the explicit constant in Theorem 2 is exactly 1. Therefore,

|Sν(ξ )| ≤ τ2 · · · τv
(
2τ1�−δ

)+ τ1τ2 · · · τν�
−δ ,

for some δ = δ(ε) > 0. This shows that the inequality

max
ξ∈F

∗
�

∣∣∣∣∣
∑

n1≤τ1

· · ·
∑

nν≤τν

e�

(
ξa(pn11 · · · pnν

ν )
)
∣∣∣∣∣ ≤ 3τ1 · · · τν�

−δ

holds for almost all prime � and this completes the proof because we can remove the extra
factor 3 by taking primes � large enough. ��

4 Exponential sums for modular forms: beyond eigenforms
We shall now prove Theorem 3. Write

af (pn) =
r∑

i=1
aiafi (p

n),

where ai ∈ Q, and fi is a newform with rational coefficients for every 1 ≤ i ≤ r. Let ω(i,p)

be the characteristic polynomial of afi (pn) and Di(p) be its discriminant.
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Consider

S1 =
{
� prime |

(
Di(p)

�

)
= 1,∀1 ≤ i ≤ r

}
.

It is clear thatS1 has positive density. One can verify this by considering primes congruent
to 1 modulo 8

∏r
i=1 Di(p). This works well because, we then have

(−1
�

)
= 1,

(
2
�

)
= 1 and

(
�

odd(Di(p))

)
= 1,∀1 ≤ i ≤ r,

where odd(.) denotes odd part of the corresponding number. These conditions altogether
imply � ∈ S1. Let α(i,p) and β(i,p) be the roots of ω(i,p). So for any � ∈ S1, we can write

ω(i,p)(x) (mod �) =
∏

1≤i≤r

(
x − α

(i,p)
�

) (
x − β

(i,p)
�

)
,

where for every i, j, α(i,p)
� ,β(j,p)

� are in F�. Now, we consider the set of primes

S2 =
{
p prime | α(i,p)(β(j,p))−1 is not root of unity, ∀ i, j

}

∪
{
p prime | α(i,p)(α(j,p))−1 is not root of unity, ∀i �= j

}
.

Lemma 10 For any prime p ∈ S2, the following inequalities are true for π (y) + O(y2ε)
many primes � ≤ y.

(1) ord (α(i,p)
� (β(j,p)

� )−1) > �ε , ord (α(i,p)
� ) > �ε and ord (β(j,p)

� ) > �ε , for all 1 ≤ i, j ≤ r,
and

(2) ord (α(i,p)
� (α(j,p)

� )−1) > �ε , for all 1 ≤ i �= j ≤ r,

Proof It is enough to prove the result only for i, j ∈ {1, 2}. Consider the Galois extension
K = Q

(
α(1,p),α(2,p)

)
. Let L be a prime ideal lying over � inOK . It is clear that

{α(1,p)
� ,α(2,p)

� ,β(1,p)
� ,β(2,p)

� } = {α(1,p),α(2,p),β(1,p),β(2,p)}(modL), (33)

because both of these sets serve as a set of roots of the equation ω(x) (mod �) and
ω(x) (modL) respectively. Note that ω(x) (modL) coincides with ω(x) (mod �). It follows
from (33) that the right hand side does not depend on the choice of prime L lying over �,
so there is no problem in working with a fixed L lying over �. It is now clear that,

{
α
(i,p)
� (β(j,p)

� )−1
}

1≤i,j≤2
=
{
α(i,p)(β(j,p))−1

}

1≤i,j≤2
(modL).

Consider R(T ) = Res (ω1(x), gT (x)) , where ω1(x) =
(
x − α(1,p)

) (
x − β(1,p)

)
and

gT (x) =
∏

t≤T

(
xt − α(2,p)t

) (
xt − β(2,p)t

)
.

It is clear that R(T ) �= 0 for any T ∈ N as p ∈ S2 by assumption. Now, consider the set of
primes

{
� prime | ord

(
α
(i,p)
� (β(j,p)

� )−1
)
, ord

(
α
(i,p)
� (α(j,p)

� )−1
)

≤ T for some i �= j ∈ {1, 2}
}
.

(34)

For any prime � in the set above, and for any prime L in OK lying over �, ω1(x) (modL)
and gT (x) (modL) have a common root, Therefore, R(T )(modL) = 0. Since both ω1(x)



18 Page 22 of 32 J. Bajpai et al. Res. Number Theory (2022) 8:18

and gT (x) are in Z[x], it is clear that R(T ) ∈ Z, and so R(T ) (mod �) = 0 as well. Now, one
can estimate the number of prime divisors of R(T ) similar to as in Lemma 7. This shows
that

ord
(
α
(i,p)
� (β(j,p)

� )−1
)

> �ε , and ord
(
α
(i,p)
� (α(j,p)

� )−1
)

> �ε

holds for all i �= j ∈ {1, 2}, and π (y) + O(y2ε) many primes � ≤ y. Rest of the cases can be
dealt with Lemma 7. ��

4.1 GST: Beyond Sato-Tate

We shall now give a short overview of Sato-Tate distribution. When f is a newform
without CM, then Sato-Tate conjecture says that the normalized coefficients a(p)

2p
k−1
2

are

equidistributed in [−1, 1] with respect to the measure

μnon−CM = 2
π

∫
sin2(θ ) dθ .

On the other hand, if f is with CM, then the corresponding Sato-Tate distribution is

μCM = 1
2π

∫ dx√
1 − x2

= 1
2π

∫
1 dθ ,

on [0,π ] − {π
2 }. Moreover at θp = π

2 , a(p) becomes zero and it is known that the set of
such primes p has density exactly 1

2 . Now, consider the L-function defined by

L(s, Symmf ) =
∏

p�N

m∏

i=0

(
1 − αi

pβ
m−i
p p−s

)−1
,

where αp,βp are normalized roots of (28). In other words, if α̃p, β̃p are the roots of
(28), then we define αp = α̃p

p
k−1
2
,βp = β̃p

p
k−1
2
. Serre in [22] showed that if for all inte-

germ ≥ 0, L(s, Symm(f )) extends analytically to Re(s) ≥ 1 and does not vanish there, then
the Sato-Tate conjecture holds true for f. Note that Barnet-Lamb et al. have proved the
conjecture in [1] working with this L-function. However, to estimate the size of S2 we will
have more than one newform to play with, and it will be helpful to have their distributions
independent. This independency property is stated as Generalized Sato-Tate (GST)
hypothesis. In this article, we shall always work with the newforms that obey this hypoth-
esis. For example, in Theorem 3, it is assumed that all the associated newforms satisfy the
GST hypothesis.

4.2 A consequence of GST

ToproveTheorem3, we need to study the setS2.Wehave that luxurywhen the associated
newforms satisfy GST.

Lemma 11 Suppose that there are r1 many components without CM and r2 many com-
ponents with CM in f. Then under the GST hypothesis, density of S2 is 2−r2 .

Proof We start by writing

α(j,p) = p
k−1
2 eiθj,p ,β(j,p) = p

k−1
2 e−iθj,p ,∀1 ≤ j ≤ r.

So, the problem reduced to study the set of primes

{
p prime | θi,p ± θj,p ∈ Q × π , for some 1 ≤ i, j ≤ r

}
. (35)



J. Bajpai et al. Res. Number Theory (2022) 8:18 Page 23 of 32 18

It follows from the discussion above that the density of this set is bounded by

(
2
π

)r1 ( 1
2π

)r2 ∫
· · ·

∫

S

sin2(θ1) sin2(θ2) · · · sin2(θr1 ) dθ1 dθ2 · · · dθr , (36)

where S = {
(θ1, θ2, · · · , θr) ∈ [0,π ]r | θi ± θj ∈ Q × π for some 1 ≤ i, j ≤ r

}
. Just for the

sake of simplicity and to have a feel of what is going on, let us first do the case when there
is only one component.
Case 1 r = 1: suppose that the given component is without CM. If α(1,p)

p β
−(1,p)
p is a root of

unity then this implies that θ1,p ∈ π ×Q. By Sato-Tate, density of such primes is bounded
by

(
2
π

) ∫

θ∈π×Q

sin2(θ ) dθ .

Since the integral above runs over a set of measure zero, the integral is zero, and for this
particular case density of S2 is indeed 1. Now, suppose that the given component is with
CM. In this case, the density of S2 is

(
1
2π

) ∫

θ∈[0,π ]\π×Q

sin2(θ ) dθ = 1
2
.

Case 2 r ≥ 2: for this general case, it is enough to show that the integral over S in (36) is
zero. This is because, due to GST, we are now working with the measure

(
2
π

)r1 ( 1
2π

)r2 ∫
· · ·

∫
sin2(θ1) sin2(θ2) · · · sin2(θr1 ) dθ1 dθ2 · · · dθr , (37)

andwith respect to thismeasure, [0,π ]r hasmeasure
( 1
2
)r2 .Wecanwrite S = ⋃

1≤i,j≤r Si,j ,
where the set Si,j is defined to be the tuples for which θi ± θj ∈ Q × π . It is now enough
to show that each of these sets Si,j has a zero measure. Note that the integral over Si,j is
crudely bounded by

∫∫

Si,j
1 dθi dθj . It is evident that

∫∫

Si,j

1 dθi dθj =
∫∫

θi+θj∈Q×π

1 dθi dθj +
∫∫

θi−θj∈Q×π

1 dθi dθj ,

as Q × Q has zero measure. We now note that

∫∫

θi−θj∈(a,b)
1 dθi dθj ≤

π∫

0

b∫

a

1 dt dθ 	 |b − a|, (38)

for any b > a. In particular, for any ε > 0,
∫∫

θi−θj∈Q×π

1 dθi dθj 	
∞∑

k=1

ε

2k
= ε.
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The last implication above follows from the standard argument to show a countable set
always has a zero measure. In particular, the second integral of (38) is zero. On the other
hand, just by replacing θj with π − θj , we get

∫∫

θi+θj∈Q×π

1 dθi dθj = −
∫∫

θi−θj∈Q×π

1 dθi dθj .

This just shows that the integral over Si,j at (38) is zero, which completes the proof. ��

4.3 Proof of Theorem 3

Let p ∈ S2 be a prime, then we can write
r∑

i=1
aiafi (p

n) (mod �) =
r∑

i=1
a(�)i

(
c(i,�)αn(i,�) + d(i,�)βn(i,�)

)
,

where a(�)i , c(i,�) and d(i,�) are all in F�.On the other hand, all the roots α(i,�) and β(i,�) are in
F�, as � ∈ S1. The proof now follows by [2, Corollary, p. 479] combining with Lemmas 10
and 11. ��
Remark 2 It is known, due to Thorner, that GST holds for r = 2 when both f1 and f2 are
without CM and not twist-equivalent. We say that f1 and f2 are twist-equivalent if there
exists a primitive Dirichlet character χ such that f1 = f2 ⊗ χ . For more details, we refer
the reader to Theorem 1.3 in [27].

5 Exponential sums for modular forms: the inverse case
Onemaynowask that for a given prime � and small enough ε,howmany primesp are there
for which an estimate like (7) holds. Our attempt to answer this question is summarized
in the form of Theorems 4 and 5. Let us begin with the proof of Theorem 4.

5.1 Proof of Theorem 4

For any prime p, let us denote the roots of x2 − a(p)x + pk−1 (mod �) by α
(�)
p ,β(�)

p . Recall
that from Deligne-Serre correspondence, we have the associated Galois representation

ρ
(�)
f : Gal

(
Q/Q

)
−→ GL2 (Z�) ,

such that a(p) = tr
(
ρ
(�)
f (Frobp)

)
for any prime p � N�. It is clear that the charac-

teristic polynomial of ρ
(�)
f (Frobp)(mod �) is same as x2 − a(p)x + pk−1 (mod �). Fol-

lowing Ribet [21, Theorem 3.1], it is known that the image of this representation is{
A ∈ GL2 (Z�) | det(A) ∈ (Z∗

�)
k−1} , except possibly for finitely many primes �. In par-

ticular, the condition (k − 1, � − 1) = 1 implies that the induced Galois representation

ρf,� : Gal
(
Q/Q

)
−→ GL2 (F�) ,

is surjective for any large prime �, and the eigenvalues of thematrix ρf,�(Frobp) ∈ GL2 (F�)
are α

(�)
p and β

(�)
p . From the proof of Theorem 2, we know that an estimate of type (7) holds

provided that,

ord (α(�)
p ) > �ε , ord (β(�)

p ) > �ε , and ord (α(�)
p (β(�)

p )−1) > �ε .

Let us define,

C =
{
A ∈ GL2(F�) | ord (λ1,A), ord (λ2,A), ord (λ1,Aλ−1

2,A) > �ε
}
,



J. Bajpai et al. Res. Number Theory (2022) 8:18 Page 25 of 32 18

where λ1,A, λ2,A are the eigenvalues of A in F
∗
�2
. Now the problem is about computing

the density of primes p for which the corresponding ρf,�
(
Frobp

)
is in C. Note that C is

a subset of GL2(F�) stable under conjugation. Hence, by Chebotarev’s density theorem,
the required density is at least |C|

|GL2(F�)| . For each a �= b ∈ F
∗
� , let Ca,b be the conjugacy

class of
(a
0
0
b
)
. It is known that |Ca,b| = (� + 1)�. For any element λ in F�2 \ F�, we denote

cλ to be the conjugacy class of matrices in GL2 (F�) having eigenvalue λ. It is known that
|Cλ| = �(� − 1). Now, we consider the following sets:

S1 = {
a, b ∈ F

∗
� | ord (a) > �ε , ord (b) > �ε , ord (ab−1) > �ε

}
,

S2 =
{
λ ∈ F

∗
�2 \ F

∗
� | ord (λ) = ord (λ�) > �ε , ord (λ�−1) > �ε

}
,

and realize that |C| = 1
2 ((� + 1)�|S1| + �(� − 1)|S2|). This reduced to the problem of

estimating S1 and S2. Let us first estimate S1. Take σ to be a generator of F
∗
� . For any

divisor d of � − 1, the set of all elements of F
∗
� having order exactly d is of the form σ

�−1
d i

with (i, d) = 1. In particular, the number of elements of F
∗
� with order greater than �ε is

given by

∑

d|�−1
d>�ε

φ(d) = � + O

⎛

⎜⎜⎝
∑

d|�−1
d<�ε

φ(d)

⎞

⎟⎟⎠ = � + O (�εd(� − 1)) = � + Oε

(
�2ε

)
,

where d(·) is the divisor function, and here we are using the well known upper bound on
divisor function (see [20]) for any prime � large enough. Now note that ord

(
ab−1) < �ε

implies that ab−1 belongs to a set with only
∑

k|�−1,k<�ε φ(k) many elements. By the
argument above, this set has only Oε

(
�2ε

)
many elements. This observation implies that

∣∣{a, b ∈ F
∗
� | ord (a), ord (b), or ord (ab−1) < �ε

}∣∣ = Oε(�2ε+1).

In particular, we then have |S1| = �2 + Oε(�2ε+1).
Let us now estimate |S2|. Take τ to be a generator of F

∗
�2
, then any λ ∈ S2, of order d,

is of the form τ
�2−1
d i, with (i, d) = 1. We also have an order restriction on λ�−1, which

implies that d
(d,�−1) > �ε . Hence,

|S2| =
∑

d|�2−1
d

(d,�−1)>�ε

φ(d) = �2 + O
( ∑

d|�2−1
d

(d,�−1)<�ε

φ(d)
)
.

Note that, the condition d
(d,�−1) < �ε implies that d < �ε+1. Therefore,

∑

d|�2−1
d

(d,�−1)<�ε

φ(d) ≤ �ε+1d(�2 − 1) = Oε

(
�1+3ε) .

Therefore, the required density is at least

1
2
(� − 1)�

|S1|
|GL2 (F�) | + 1

2
(� + 1)�

|S2|
|GL2 (F�)| = 1 + Oε

(
1

�1−3ε

)
.

��
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5.2 Proof of Theorem 5

Let ρf,� : Gal
(
Q/Q

)
→ GL2r (F�) be the map defined by

σ �→

⎛

⎜⎜⎜⎜⎝

ρf1,� (σ )
ρf2,� (σ )

. . .
ρfr,� (σ )

⎞

⎟⎟⎟⎟⎠
.

It is clear that the image of this representation is contained in �r(�), where

�r(�) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⎛

⎜⎜⎜⎜⎝

g1
g2

. . .
gr

⎞

⎟⎟⎟⎟⎠
| det(g1) = det(g2) = · · · = det(gr)

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

.

It is in fact the case that the image is contained in �
(k−1)
r (�), where �

(k−1)
r (�) denotes the

set of matrices in�r(�) in which determinant of each block is a (k − 1)th power in F
∗
� .Due

to [21, Theorem 3.1], we may assume that for any prime � large enough, the image of each
ρfi,� is �

(k−1)
1 (�), which coincides with the set of matrices in GL2(F�) whose determinants

are a (k − 1, � − 1)th power in F
∗
� . If the image of ρf,� is not exactly �

(k−1)
r (�), then by [19,

Lemma 5.1] we get a set of quadratic characters {χi,j,�}1≤i,j≤r of Gal
(
Q/Q

)
such that

ρfi ,�
(
Frobp

)
is conjugate to χi,j,�

(
Frobp

)
ρfj ,�

(
Frobp

)
in GL2(F�),

for all 1 ≤ i, j ≤ r. In particular, ai(p) = ±aj(p)(mod �), for all 1 ≤ i, j ≤ r, and any prime
p � N�. This implies that α

(i,p)
� + β

(i,p)
� = ±(α(j,p)

� + β
(j,p)
� ).Moreover, we also know that

α
(i,p)
� β

(i,p)
� = α

(j,p)
� β

(j,p)
� = pk−1 (mod �).

In particular, this means that

{α(i,p)
� ,β(i,p)

� } = ±{α(j,p)
� ,β(j,p)

� },∀1 ≤ i, j ≤ r, and for any prime p � N�. (39)

Due to GST, for a positive density of primes p, none of these

{α(i,p)β−(j,p)}1≤i,j≤2 or ± {α(i,p),α−(j,p)}1≤i �=j≤2

are roots of unity. For those primes p, following the arguments in the proof of Lemma 10,
and considering the set in (34), each element of the set {α(i,p)

� β
−(j,p)
� }1≤i,j≤2 has order larger

than 4 except for finitely many primes �.We then have a contradiction to (39), and hence
we may assume that the image of ρf,� is indeed �

(k−1)
r (�) for any prime � large enough.

Hence, the required density is at least |Ck−1
r (�)|

|�(k−1)
r (�)| ,whereC

k−1
r (�) is the union of conjugacy

classes of elements in �
(k−1)
r (�) whose eigenvalues satisfy the conditions of Theorem 1.

Note that any tuple (a1, a2, · · · , a2r ) ∈ (F∗
�)

2r with ord (ai) > �ε , ord (aia−1
j ) > �ε ,∀i �= j

and aiai+1 = ajaj+1,∀i, j odd, satisfies that∏i, odd Cai,ai+1 ⊆ Ck−1
r (�).We call these tuples

nice and we want to count them. First of all note that,

{(a1, a2, · · · , a2r ) ∈ (F∗
�)

2r | aiai+1 = ajaj+1,∀i, j odd} = (� − 1)r+1

(� − 1, k − 1)
.

On the other hand, for any (k − 1)th power λ in F
∗
� , note that ab = λ and ord (ab−1) < �ε

imply ord (a2λ−1) < �ε . From the proof of Theorem 4, for a fixed λ, the number of such a
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is Oε(�2ε).Moreover, ord (a) < �ε or ord (b) < �ε holds for only Oε(�2ε) many elements
a or b. In particular, the number of tuples that does not come into our consideration is

∑

λ, (k−1)th power
Oε(�r−1+2ε) = Oε

(
�r+2ε

(k − 1, � − 1)

)
.

In particular, we then have

|Ck−1
r (�)| ≥

∑

(a1 ,a2 ,···,ar ) nice

(
∏

i odd
|Cai,ai+1 |

)

=
(

�(� + 1)
2

)r ( (� − 1)r+1

(� − 1, k − 1)
+ Oε

(
�r+2ε

(k − 1, � − 1)

))
. (40)

The extra factor
(

�(�+1)
2

)r
is coming because each conjugacy class Cai,i+1 has �(� + 1)

many elements and taking into consideration that Cai,ai+1 = Cai+1 ,ai ,∀i odd, the extra
factor 1

2 is coming for each component. The proof is now complete because |�(k−1)
r (�)| =( |GL2(F�)|

�−1

)r
�−1

(�−1,k−1) . ��

6 Impact onWaring-type problems
In the present section we combine Theorem 1 with classical analytical tools to prove
that a linear recurrence sequence {sn} is an additive basis over prime fields, under some
assumptions. Moreover, we discuss about the advantages of nontrivial exponential sums
obtained in Theorem 1 to prove it.

6.1 Waring-type problems with linear recurrence sequences

Let {sn} be a nonzero linear recurrence sequence modulo � as in (2) with order r, period
τ and (a0, �) = 1. Given an integer k ≥ 2, for any residue class λ(mod �), we denote by
Tk (λ) the number of solutions of the congruence

sn1 + · · · + snk ≡ λ (mod �), with 1 ≤ n1, . . . , nk ≤ τ .

Then, writing Tk (λ) in terms of exponential sums, we get

Tk (λ) = 1
�

�−1∑

ξ=0

∑

n1≤τ

· · ·
∑

nk≤τ

e�

(
ξ (sn1 + · · · + snk − λ)

)
.

Taking away the term ξ = 0 and using triangle inequality, it is clear that

∣∣∣∣∣Tk (λ) − τ k

�

∣∣∣∣∣ = 1
�

∣∣∣∣∣∣

�−1∑

ξ=1

∑

n1≤τ

· · ·
∑

nk≤τ

e�

(
ξ (sn1 + · · · + snk − λ)

)
∣∣∣∣∣∣

≤ 1
�

�−1∑

ξ=1

∣∣∣∣∣∣

∑

n1≤τ

· · ·
∑

nk≤τ

e�

(
ξ (sn1 + · · · + snk )

)
∣∣∣∣∣∣

≤ 1
�

�−1∑

ξ=1

⎛

⎝
∣∣∣∣∣
∑

n1≤τ

e�

(
ξ sn1

)
∣∣∣∣∣ · · ·

∣∣∣∣∣∣

∑

nk≤τ

ep
(
ξ snk

)
∣∣∣∣∣∣

⎞

⎠

≤
(
max
ξ∈F

∗
�

∣∣∣∣∣
∑

n≤τ

e� (ξ sn)

∣∣∣∣∣

)k

. (41)
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Assume that we have an exponential sum bound of the type

max
ξ∈F

∗
�

∣∣∣∣∣
∑

n≤τ

e� (ξ sn)

∣∣∣∣∣ ≤ R . (42)

Then, combining (41) and (42) we get
∣∣∣Tk (λ) − τ k

�

∣∣∣ ≤ Rk . Now, if (R/τ )k� goes to zero as
� → ∞, we obtain an effective asymptotic formula for Tk (λ). In particular, Tk (λ) > 0 for
� large enough. For instance, if τ ≥ �r/2+ε we employ Korobov’s bound (3) with R = �r/2

to get
∣∣∣∣∣Tk (λ) − τ k

�

∣∣∣∣∣ ≤ τ k

�

(
(�r/2/τ )k�

)
≤ τ k

�

(
�1−kε

)
,

therefore Tk (λ) = τ k

�
(1 + o(1)) for k > 1/ε in the range τ ≥ �r/2+ε . If the characteristic

polynomial ω(x) of {sn} is irreducible with deg(ω) ≥ 2 and the least period τ satisfies
gcd(τ , �d − 1) < τ�−ε for any divisor d < r of r, then by Corollary 6 we choose R = τ�−δ

for some positive δ = δ(ε), to get
∣∣∣∣∣Tk (λ) − τ k

�

∣∣∣∣∣ ≤ τ k

�

(
(τ�−δ/τ )k�

)
= τ k

�

(
�1−kδ

)
.

Thus, Tk (λ) > 0 when k > 1/δ and maxd<r
d|r

gcd(τ , �d − 1) < τ�−ε . Let us summarize

the above discussion in the form of following corollary.

Corollary 12 Let � be a prime number, k > 0 be any integer, ε > 0, and {sn} be a linear
recurrence sequence of order r ≥ 2 in F�. If the characteristic polynomial ω(x) in F�[x] is
irreducible with (ω(0), �) = 1, the least period τ satisfies

max
d<r
d|r

(τ , �d − 1) < τ�−ε ,

and for every integer λ, let Tk (λ) denote the number of solutions of the congruence

sn1 + · · · + snk ≡ λ (mod �), with 1 ≤ n1, . . . , nk ≤ τ ,

then there exists an integer k0 > 0 such that for any k ≥ k0, Tk (λ) = τ k

�
(1 + o(1)).

We are now ready to prove the main result of this section.

Theorem 13 Let {sn}bea linear recurrence sequence inZ, whose characteristic polynomial
ω(x) ∈ Z[x] is monic, irreducible, and having prime degree. Then for a set of primes � with
positive density, the sequence {sn} is an additive basis modulo �. More precisely, there exists
an absolute constant c such that the Waring-type congruence

sn1 + · · · + snc ≡ λ (mod �)

is solvable for any residue class λ (mod �).

Proof Let Qω denote the splitting field of ω and Gω be Gal (Qω/Q). Note that deg(ω)
divides |Gω| andGω is contained in the symmetric group Sdeg(ω).By the Cauchy’s theorem,
there exists an element in Gω of order deg(ω). In particular, there is a deg(ω)-cycle in Gω

because deg(ω) is prime. By Chebotarev’s density theorem, the set of such primes � for
which ω(x) (mod �) is irreducible, have positive density, see Theorem of Frobenius in [26,
Page 11]. We are now interested to work with these primes.
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Let α be a root of ω(x)(mod �), and τ be the period of sequence {sn}(mod �). We then
have τ = ord (α). Since ω(x)(mod �) is irreducible, one can write

ω(x)(mod �) =
deg(ω)−1∏

i=0
(x − α�i ) ,

and in particular, ω(0)(mod �) = (−α)1+�+�2+···+�deg(ω)−1 . Note that (ω(0), �) = 1, for all
but finitely many primes �. We now need to verify the condition of Corollary 12 for d = 1
because deg(ω) is prime. Observe that gcd(ord α, � − 1) = ord α

ord α�−1 . Fix any 0 < ε < 1/2,
and now the proof is complete if ord

(
α�−1) > �ε holds for almost all primes �.

For any integer t, we have the following

α(�−1)t = 1 =⇒ αrt =
(r−1∏

i=0
α�i

)t

=⇒ α2rt = ω(0)2t .

In particular, α is a root of both ω(x)(mod �) and
∏

t≤T
(
x2rt − ω(0)2t

)
(mod �).

Now, given a large positive parameter T , we consider the resultant

R(T ) = Res

⎛

⎝ω(x),
∏

t≤T

(
x2rt − ω(0)2t

)
⎞

⎠ .

Counting the number of distinct prime factors of the resultant as in the proof of Lemma 7,
we see that |{� prime | ord (α�−1) ≤ T }| = O(T 2). For any large y > 0, taking T = yε , we
see that there exists a δ such that

max
ξ∈F

∗
�

∣∣∣∣∣
∑

n≤τ

e� (ξ sn)

∣∣∣∣∣ ≤ τ�−δ

holds, for at least cωπ (y) + O(y2ε) many primes � ≤ y, for some constant (which depends
only on ω) cω > 0. Now, the proof follows immediately from Corollary 12. ��

For further explanation, one can consider the following example.

Example 14 Consider the classical case of Fibonacci sequence {Fn}. In the beginning of
this section, the result of the third author is discussed for this special case.We can however
get a slightly weaker result from Corollary 12. In this case, the characteristic polynomial
is x2 − x− 1. It is of course a monic, irreducible and of a prime degree. This polynomial is
irreducible modulo prime �, iff we have the Legendre symbol

(
5
�

)
= −1. The set of such

primes have density 1/2.Corollary 12 says, for almost all of these primes, {Fn} is an additive
basis modulo �. For the other set of primes, we use Lemma 7. Given any 0 < ε < 1/2, for
π (y) + O(y2ε) many primes � ≤ y, we have

ord α� > �ε , ord β� > �ε and ord (α�β
−1
� ) > �ε ,

where α� and β� are the roots of x2 − x − 1(mod �). It then follows from [2, Corollary,
page 479] that there exists a δ = δ(ε) > 0 such that

max
(c,d)∈F�×F�

(c,d) �=(0,0)

∣∣∣∣∣∣

∑

n≤�−1
e� (cαn + dβn)

∣∣∣∣∣∣
≤ �1−δ .
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In particular, we then have

max
ξ∈F

∗
�

∣∣∣∣∣
∑

n≤τ

e� (ξFn)

∣∣∣∣∣ ≤ τ�−δ ,

which guarantees the existence of an absolute constant, as we saw in the proof of Theo-
rem 13. With this, we have an inexplicit result for the Fibonacci sequences compared to
what the third author had in [11]. However, Theorem 13 provides a general result for a
large class of linear recurrence sequences.

6.2 Waring-type problems for modular forms

Let us recall our discussion from the introduction about Waring problem for modular
forms. In this section, we are assuming that the modular form is a newform without CM.
Fix any 0 < ε < 1

2 , say ε = 1
3 . Then taking δ := δ(ε) as in Theorem 2, the following

estimate

max
ξ∈F

∗
�

∣∣∣∣∣
∑

n≤τ

e� (ξa(pn))

∣∣∣∣∣ ≤ τ�−δ ,

holds for almost all primes p and �. The discussion in Sect. 6.1 shows that Ts(λ) > 0 for
any λ ∈ F�, and s > 1/δ, where Ts(λ) is the number of solutions of the congruence

a(pn1 ) + · · · + a(pns ) ≡ λ (mod �), with 1 ≤ n1, . . . , ns ≤ τ .

Moreover, this s does not depend on the choice of the eigenform because δ does not.More
precisely, we have the following result.

Corollary 15 Let f be a newform without CM and with rational Fourier coefficients. We
say, a proposition Qf (p, �, s) is true if and only if, any element of F� can be written as a
sum of at most s elements of the set {a(pn)}n≥0. Then, there is an absolute constant s0 such
thatQf (p, �, s0) is true for almost all primes p and �. Moreover, s0 does not depend on the
choice of f.

As an immediate consequence of Theorem 4, we obtain the following result.

Corollary 16 Suppose the newform is without CM and with integer Fourier coefficients.
Then there exists an absolute constant s0 such that, for any large prime � satisfying the
coprimality condition (� − 1, k − 1) = 1, the proposition Qf (p, �, s0) is true for a set of
primes p with density at least 1+O

(
1√
�

)
. Moreover, s0 does not depend on the choice of f.

6.3 Bound of non-linearity of a linear recurrence sequence

Let {sn} be a linear recurrence sequence modulo � as in (2) with order r, (a0, �) = 1 and
period τ . For 0 ≤ b ≤ �r − 1, let us define the sum

W (b) =
∑

n≤τ

e�

(
sn + 〈

b, n
〉)
,

where
〈
b, n

〉
denotes the inner product

〈
b, n

〉 = b0n0 + · · · + br−1nr−1 assuming that
0 ≤ b, n ≤ �r − 1 are written in its �–ary expansion

b = b0 + b1� + · · · + br−1�
r−1, n = n0 + n1� + · · · + nr−1�

r−1.
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Bounds forW (b) have cryptographic significance, see [25] and references therein. Shpar-
linski and Winterhof [25, Theorem 1] proved that

max
0≤b≤�r−1

|W (b)| 	 τ 3/4r1/4�r/8,

whenever the characteristic polynomial of {sn} is irreducible. Such bound is asymptotically
effective if r�r/2/τ → 0. Combining Corollary 6 and the ideas of [25], we are able to
improve such bound for a large class of linear recurrence sequences in the range τ > �ε .
For example, assuming hypothesis of Corollary 6, if r is fixed then |W (b)| 	 τ�−δ′ as
� → ∞ for some δ′ > 0. In general, we get |W (b)| = o(τ ) if r log �/�δ′ → 0 as � → ∞.
More precisely,

Corollary 17 Let � be a prime number, ε > 0 and {sn} be a linear recurrence sequence of
order r ≥ 1. If the characteristic polynomial f (x) in F�[x] is irreducible polynomial with
(f (0), �) = 1, and the least period τ satisfies

τ > �ε , and max
d<r
d|r

(τ , �d − 1) < τ�−ε ,

then there exists a δ = δ(ε) > 0 such that

max
0≤b≤�r−1

∣∣∣∣∣
∑

n≤τ

e�

(
sn + 〈

b, n
〉)
∣∣∣∣∣ ≤ τ�−δ/4(r log �)1/4

(
1 + �−δ/4(r log �)1/4

)
.

Proof The proof follows the same steps as given in [25, Theorem 1]. We just need to
employ the bound given by Corollary 6 instead of Korobov’s bound. ��

Note.Wehave an improvement on the bound [25, Theorem 1] , if τ ≤ �r/2+δ

log �
.Clearly there

are many such cases, for instance, one can consider any element in F
∗
� of order smaller

than �
1
2 .
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